Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The Orexin/Hypocretin System
Details
Informationen zum Autor Jim Fadel is a Professor of Pharmacology, Physiology and Neuroscience at the University of South Carolina School of Medicine. His initial interest in the orexin/hypocretin system began as a postdoctoral fellow with Dr. Ariel Deutch, where he described the anatomical basis for orexin-dopamine interactions and identified orexin neurons as targets of antipsychotic drugs associated with weight gain (Fadel & Deutch, 2002; Fadel et al., 2002). Since then, he has focused extensively on anatomical and neurochemical mechanisms underlying orexin effects on cognition. With his long-time collaborator, Dr. Burk, he has shown that orexins play important roles in regulating attentional functions which stem, in part, from their effects on the basal forebrain cholinergic system (e.g. Fadel & Burk, 2010; Frederick-Duus et al., 2007). Dr. Fadel's lab has also demonstrated loss of orexin neurons in their aged rat model (Kessler et al., 2010), a phenomenon proposed to link age-related alterations in homeostasis with cognition (Stanley & Fadel, 2012; Fadel et al., 2013). Josh Burk is a Professor and Chair of the to Department of Psychological Sciences at the College of William and Mary. His is a neuropsychopharmacologist who studies neural mechanisms involved in attention and impulsivity. He and Dr. Fadel have a long-standing collaboration, which has been supported by two R01 grants. They have shown that blockade of orexin receptors, systemically or by infusion into the basal forebrain disrupts attentional performance (Boschen, Fadel, & Burk, 2009). They discussed the implications of these findings within the existing literature in a review paper (Fadel & Burk, 2010). Most recently, they showed that administration of orexin A can attenuate attentional deficits after a distracter or following loss of basal forebrain corticopetal cholinergic neurons (Zajo, Fadel, & Burk, 2016). They have a number of ongoing studies to understand the role of orexins/hypocretins in cognition associated with their current R01 grant. Klappentext The Orexins/Hypocretins System: Functional Roles and Therapeutic Potential summarizes research on both the physiological functioning of orexins, their impact on homeostatic processes, and related disorders. The book encompasses the effects on appetite, sleep, substance abuse, cognition, and anxiety. Additionally, it examines new therapeutic approaches utilizing orexins, including utilization of orexin receptors for drug development. It is essential reading for neuroscience researchers interested in brain-behavior relationships, as well as psychiatrists, endocrinologists and pharmacologists. Inhaltsverzeichnis Part 1: Introduction 1. Hypocretins (orexins): 20 years of dissecting arousal circuits 2. Orexins and motivated behaviors Part 2: Orexins and Sleep 3. Orexins and the stabilization of wake/sleep states 4. Orexins and narcolepsy in animal models Part 3: Orexins and Feeding 5. Orexin's role in motivated behavior for food 6. Orexin drives energy expenditure Part 4. Orexins and Drug Abuse 7. Orexins/hypocretins and addiction 8. Hypocretin 1 receptor regulation of dopaminergic signaling and motivated behavior 9. Orexins and opioid addiction Part 5: Orexins and Cognition 10. Orexins and cognition: neurochemical and anatomical substrates 11. The hypocretin/orexin system and fear learning Part 6: Orexins and Psychological Disorders 12. Orexins and anxiety disorders 13. Orexins as targets for treating brain disorders ...
Autorentext
Jim Fadel is a Professor of Pharmacology, Physiology and Neuroscience at the University of South Carolina School of Medicine. His initial interest in the orexin/hypocretin system began as a postdoctoral fellow with Dr. Ariel Deutch, where he described the anatomical basis for orexin-dopamine interactions and identified orexin neurons as targets of antipsychotic drugs associated with weight gain (Fadel & Deutch, 2002; Fadel et al., 2002). Since then, he has focused extensively on anatomical and neurochemical mechanisms underlying orexin effects on cognition. With his long-time collaborator, Dr. Burk, he has shown that orexins play important roles in regulating attentional functions which stem, in part, from their effects on the basal forebrain cholinergic system (e.g. Fadel & Burk, 2010; Frederick-Duus et al., 2007). Dr. Fadel's lab has also demonstrated loss of orexin neurons in their aged rat model (Kessler et al., 2010), a phenomenon proposed to link age-related alterations in homeostasis with cognition (Stanley & Fadel, 2012; Fadel et al., 2013). Josh Burk is a Professor and Chair of the to Department of Psychological Sciences at the College of William and Mary. His is a neuropsychopharmacologist who studies neural mechanisms involved in attention and impulsivity. He and Dr. Fadel have a long-standing collaboration, which has been supported by two R01 grants. They have shown that blockade of orexin receptors, systemically or by infusion into the basal forebrain disrupts attentional performance (Boschen, Fadel, & Burk, 2009). They discussed the implications of these findings within the existing literature in a review paper (Fadel & Burk, 2010). Most recently, they showed that administration of orexin A can attenuate attentional deficits after a distracter or following loss of basal forebrain corticopetal cholinergic neurons (Zajo, Fadel, & Burk, 2016). They have a number of ongoing studies to understand the role of orexins/hypocretins in cognition associated with their current R01 grant.
Klappentext
The Orexins/Hypocretins System: Functional Roles and Therapeutic Potential summarizes research on both the physiological functioning of orexins, their impact on homeostatic processes, and related disorders. The book encompasses the effects on appetite, sleep, substance abuse, cognition, and anxiety. Additionally, it examines new therapeutic approaches utilizing orexins, including utilization of orexin receptors for drug development. It is essential reading for neuroscience researchers interested in brain-behavior relationships, as well as psychiatrists, endocrinologists and pharmacologists.
Inhalt
Part 1: Introduction
- Hypocretins (orexins): 20 years of dissecting arousal circuits
Orexins and motivated behaviors
Part 2: Orexins and Sleep
- Orexins and the stabilization of wake/sleep states
Orexins and narcolepsy in animal models
Part 3: Orexins and Feeding
- Orexin's role in motivated behavior for food
Orexin drives energy expenditure
Part 4. Orexins and Drug Abuse
- Orexins/hypocretins and addiction
- Hypocretin 1 receptor regulation of dopaminergic signaling and motivated behavior
Orexins and opioid addiction
Part 5: Orexins and Cognition
- Orexins and cognition: neurochemical and anatomical substrates
The hypocretin/orexin system and fear learning
Part 6: Orexins and Psychological Disorders
- Orexins and anxiety disorders
- Orexins as targets for treating brain disorders
Weitere Informationen
- Allgemeine Informationen
- GTIN 09780128137512
- Genre Psychology
- Editor Jim R. Fadel, Joshua A. Burk
- Sprache Englisch
- Anzahl Seiten 336
- Größe H229mm x B152mm x T16mm
- Jahr 2019
- EAN 9780128137512
- Format Kartonierter Einband
- ISBN 978-0-12-813751-2
- Veröffentlichung 11.01.2019
- Titel The Orexin/Hypocretin System
- Autor Jim R. (EDT) Fadel, Joshua A. (EDT) Burk
- Untertitel Functional Roles and Therapeutic Potential
- Gewicht 320g
- Herausgeber Elsevier Science & Technology