Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The SQP method for optimal control problems with mixed constraints
Details
Many scientific and technical processes are described by partial differential equations. The optimization of such processes leads to optimal control problems for partial differential equations. Focus of interest in present work is a family of optimal control problems governed by semilinear elliptic partial differential equations (PDEs) and pointwise nonlinear inequality constraints. In order to find an optimal solution, one puts special attention to numerical methods. In the scope of present dissertation, we establish necessary and sufficient optimality conditions and analyze the convergence of sequential quadratic programming (SQP) methods applied to mixed constrained optimal control problems, i.e., for the optimal control problem with coupling between control and state in constraints. The convergence theory for the SQP method bases on its relation to the Newton method applied to a so-called generalized equation which represents first-order necessary optimality conditions. At the end of this thesis the developed theory is verified by numerical tests for discrete optimal control problems.
Autorentext
Nataliya Metla, Dr. techn.: Studium der technische Mathematik an der Johannes Kepler Universität, Linz mit Schwerpunkt nichtlineare optimale Stuerungsprobleme, Promotion im Jahr 2008
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838102276
- Sprache Deutsch
- Genre Weitere Mathematik-Bücher
- Größe H220mm x B150mm x T9mm
- Jahr 2009
- EAN 9783838102276
- Format Kartonierter Einband
- ISBN 978-3-8381-0227-6
- Veröffentlichung 20.01.2009
- Titel The SQP method for optimal control problems with mixed constraints
- Autor Nataliya Metla
- Untertitel Optimal control of nonlinear elliptic PDEs
- Gewicht 221g
- Herausgeber Südwestdeutscher Verlag für Hochschulschriften
- Anzahl Seiten 136