Théorèmes limites dans l'analyse statistique des systèmes dynamiques

CHF 70.95
Auf Lager
SKU
KGPH2JK7DQL
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

Dans cette thèse nous étudions les théorèmes limites dans l'analyse statistique des systèmes dynamiques. Le premier chapitre est consacré aux notions des bases des système dynamiques ainsi que la théorie ergodique. Dans le deuxième chapitre nous introduisons un cadre fonctionnel abstrait pour lequel la version quenched du théorème de la limite centrale en dimension 1 pour les systèmes dynamiques uniformément dilatants est satisfaite sous une condition de validité nécessaire et suffisante. Le troisième chapitre est consacré au principe d'invariance presque sûr pour les application aléatoires dilatantes par morceaux. Nous présentons certaines hypothèses sous lesquelles le est vérifié en utilisant la méthode d'approximation des martingales de Cuny et Merlèvede. Nous étudions aussi le théorème de Sprindzuk et ses conséquences. Nous établissons dansle chapitre quatre la décroissance des corrélations pour les systèmes dynamiques aléatoires uniformément dilatants par la méthode de couplage en dimension 1. Nous terminons ce travail par une présentation des concepts de base de la théorie des mesures et probabilités et une présentation de l'espace des fonctions à variation bornée.

Autorentext

Jeune chercheur spécialisé en mathématiques.Il est diplômé d'une doctorat des Universités de Toulon et de Sfax, puis d'un mastère de mathématiques et applications de l'Université de Tunis El Manar, enfin d'une maîtrise de l'Université de Carthage. Il travaille sur les théorèmes limites des systèmes dynamiques aléatoires.


Klappentext

Dans cette thèse nous étudions les théorèmes limites dans l'analyse statistique des systèmes dynamiques. Le premier chapitre est consacré aux notions des bases des système dynamiques ainsi que la théorie ergodique. Dans le deuxième chapitre nous introduisons un cadre fonctionnel abstrait pour lequel la version quenched du théorème de la limite centrale en dimension 1 pour les systèmes dynamiques uniformément dilatants est satisfaite sous une condition de validité nécessaire et suffisante. Le troisième chapitre est consacré au principe d'invariance presque sûr pour les application aléatoires dilatantes par morceaux. Nous présentons certaines hypothèses sous lesquelles le est vérifié en utilisant la méthode d'approximation des martingales de Cuny et Merlèvede. Nous étudions aussi le théorème de Sprindzuk et ses conséquences. Nous établissons dansle chapitre quatre la décroissance des corrélations pour les systèmes dynamiques aléatoires uniformément dilatants par la méthode de couplage en dimension 1. Nous terminons ce travail par une présentation des concepts de base de la théorie des mesures et probabilités et une présentation de l'espace des fonctions à variation bornée.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Französisch
    • Autor Mohamed Abdelkader
    • Titel Théorèmes limites dans l'analyse statistique des systèmes dynamiques
    • Veröffentlichung 27.09.2018
    • ISBN 3639730704
    • Format Kartonierter Einband
    • EAN 9783639730708
    • Jahr 2018
    • Größe H220mm x B150mm x T7mm
    • Gewicht 173g
    • Anzahl Seiten 104
    • Herausgeber Éditions universitaires européennes
    • GTIN 09783639730708

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470