Time-Series Prediction and Applications

CHF 215.60
Auf Lager
SKU
KI26U74QHCT
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at the end of each chapter to the readers' ability and understanding of the topics covered.

Proposes generic solutions to the prediction of an economic time-series with alternative formulations using machine learning and type-2 fuzzy sets Offers original content and a unique presentation style Includes the source codes of the programs developed in MATLAB to accompany the book Requires a only a high-school understanding of algebra and calculus, and first-year-undergraduate-level programming skills Includes supplementary material: sn.pub/extras

Inhalt
An Introduction to Time-Series Prediction.- Prediction Using Self-Adaptive Interval Type-2 Fuzzy Sets.- Handling Multiple Factors in the Antecedent of Type-2 Fuzzy Rules.- Learning Structures in an Economic Time-Series for Forecasting Applications.- Grouping of First-Order Transition Rules for Time-Series Prediction by Fuzzy-induced Neural Regression.- Conclusions and Future Directions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319854359
    • Auflage Softcover reprint of the original 1st edition 2017
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T15mm
    • Jahr 2018
    • EAN 9783319854359
    • Format Kartonierter Einband
    • ISBN 3319854356
    • Veröffentlichung 21.07.2018
    • Titel Time-Series Prediction and Applications
    • Autor Amit Konar , Diptendu Bhattacharya
    • Untertitel A Machine Intelligence Approach
    • Gewicht 400g
    • Herausgeber Springer
    • Anzahl Seiten 260

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470