Topics in Banach Space Theory

CHF 89.25
Auf Lager
SKU
HPLMV4OSR4B
Stock 1 Verfügbar
Geliefert zwischen Fr., 23.01.2026 und Mo., 26.01.2026

Details

The geometry of Banach spaces is a rich, beautiful, and rewarding subject. In this book the authors explore the isomorphic theory of Banach spaces and techniques, using the unifying viewpoint of basic sequences. Banach space theory can function as a window to such advanced concepts as harmonic analysis, and beyond into signal processing, economics and physics. The book is suitable for a semester-long graduate course and it will become a standard reference and textbook in the area.


The approach taken is the unifying viewpoint of basic sequences Includes supplementary material: sn.pub/extras

Klappentext

Assuming only a basic knowledge of functional analysis, the book gives the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. The aim of this text is to provide the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems.
Fernando Albiac received his PhD in 2000 from Universidad Publica de Navarra, Spain. He is currently Visiting Assistant Professor of Mathematics at the University of Missouri,
Columbia. Nigel Kalton is Professor of Mathematics at the University of Missouri, Columbia. He has written over 200 articles with more than 82 different co-authors, and most recently, was the recipient of the 2004 Banach medal of the Polish Academy of Sciences.


Inhalt
Bases and Basic Sequences.- The Classical Sequence Spaces.- Special Types of Bases.- Banach Spaces of Continuous Functions.- L1(?)-Spaces and C(K)-Spaces.- The Lp-Spaces for 1 ? p < ?.- Factorization Theory.- Absolutely Summing Operators.- Perfectly Homogeneous Bases and Their Applications.- ?p-Subspaces of Banach Spaces.- Finite Representability of ?p-Spaces.- An Introduction to Local Theory.- Important Examples of Banach Spaces.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781441920997
    • Sprache Englisch
    • Auflage Softcover reprint of hardcover 1st edition 2006
    • Größe H235mm x B155mm x T21mm
    • Jahr 2010
    • EAN 9781441920997
    • Format Kartonierter Einband
    • ISBN 1441920994
    • Veröffentlichung 19.11.2010
    • Titel Topics in Banach Space Theory
    • Autor Nigel J. Kalton , Fernando Albiac
    • Untertitel Graduate Texts in Mathematics 233
    • Gewicht 587g
    • Herausgeber Springer New York
    • Anzahl Seiten 388
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470