Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Topics in Extrinsic Geometry of Codimension-One Foliations
Details
Extrinsic geometry describes those properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds.
Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results.
The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator.
***The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions*) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves.
This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.
New topic of 'foliation with a time-dependent metric' is developed Presents new research tools in geometry of foliations (Extrinsic Geometric Flow) Presents examples and open problems for foliated surfaces Includes supplementary material: sn.pub/extras
Inhalt
-1. Integral Formulae (Introduction, Preliminaries, Integral Formulae for Codimension-one foliations).-2.Variation Formulae (Introduction, Auxiliary results, Variations of extrinsic geometric quantities, Variations of general functional, Variations of particular functional, Applications and examples).-3. Extrinsic Geometric Flows (Introduction, The systems of PDE's related to EGF, Auxiliary results, Existence and uniqueness results, A solution to general case, Global existence of EGF, Variation formulae for EGF, Extrinsic geometric solitons, Applications and examples).- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441999078
- Sprache Englisch
- Auflage 2011 edition
- Größe H239mm x B159mm x T15mm
- Jahr 2011
- EAN 9781441999078
- Format Kartonierter Einband
- ISBN 978-1-4419-9907-8
- Veröffentlichung 26.07.2011
- Titel Topics in Extrinsic Geometry of Codimension-One Foliations
- Autor Vladimir Rovenski , Pawel Walczak
- Untertitel SpringerBriefs in Mathematics
- Gewicht 208g
- Herausgeber Springer-Verlag GmbH
- Anzahl Seiten 114
- Lesemotiv Verstehen
- Genre Mathematik