Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II

CHF 74.75
Auf Lager
SKU
DGVLNB1PBO3
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The present monograph further develops the study, via the techniques of combinatorial anabelian geometry, of the profinite fundamental groups of configuration spaces associated to hyperbolic curves over algebraically closed fields of characteristic zero.
The starting point of the theory of the present monograph is a combinatorial anabelian result which allows one to reduce issues concerning the anabelian geometry of configuration spaces to issues concerning the anabelian geometry of hyperbolic curves, as well as to give purely group-theoretic characterizations of the cuspidal inertia subgroups of one-dimensional subquotients of the profinite fundamental group of a configuration space.
We then turn to the study of tripod synchronization, i.e., of the phenomenon that an outer automorphism of the profinite fundamental group of a log configuration space associated to a stable log curve inducesthe same outer automorphism on certain subquotients of such a fundamental group determined by tripods [i.e., copies of the projective line minus three points]. The theory of tripod synchronization shows that such outer automorphisms exhibit somewhat different behavior from the behavior that occurs in the case of discrete fundamental groups and, moreover, may be applied to obtain various strong results concerning profinite Dehn multi-twists.
In the final portion of the monograph, we develop a theory of localizability, on the dual graph of a stable log curve, for the condition that an outer automorphism of the profinite fundamental group of the stable log curve lift to an outer automorphism of the profinite fundamental group of a corresponding log configuration space. This localizability is combined with the theory of tripod synchronization to construct a purely combinatorial analogue of the natural outer surjection from the étale fundamental group of the moduli stack of hyperbolic curves over the field of rational numbers to the absolute Galois group of the field of rational numbers.


The theory sheds new light on the Grothendieck-Teichmüller group and arithmetic absolute Galois groups The theory developed in the monograph has important applications to the study of such groups The monograph only requires a knowledge of graphs, profinite groups, and basic logarithmic algebraic geometry

Inhalt

  1. Combinatorial Anabelian Geometry in the Absence of Group-theoretic Cuspidality.- 2. Partial Combinatorial Cuspidalization for F-admissible Outomorphisms.- 3. Synchronization of Tripods.- 4. Glueability of Combinatorial Cuspidalizations. References.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Springer Nature Singapore
    • Gewicht 277g
    • Untertitel Tripods and Combinatorial Cuspidalization
    • Autor Shinichi Mochizuki , Yuichiro Hoshi
    • Titel Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II
    • Veröffentlichung 22.05.2022
    • ISBN 9811910952
    • Format Kartonierter Einband
    • EAN 9789811910951
    • Jahr 2022
    • Größe H235mm x B155mm x T10mm
    • Anzahl Seiten 176
    • Lesemotiv Verstehen
    • Auflage 1st edition 2022
    • GTIN 09789811910951

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470