Trace (Linear Algebra)
CHF 46.40
Auf Lager
SKU
8AJ0RFK5AF3
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025
Details
High Quality Content by WIKIPEDIA articles! In linear algebra, the trace of an n-by-n square matrix A is defined to be the sum of the elements on the main diagonal (the diagonal from the upper left to the lower right) of A, i.e., mathrm{tr}(A) = a{11} + a{22} + dots + a{nn}=sum{i=1}^{n} a_{i i} , where aij represents the entry on the ith row and jth column of A. Equivalently, the trace of a matrix is the sum of its eigenvalues, making it an invariant with respect to a change of basis. This characterization can be used to define the trace for a linear operator in general. Note that the trace is only defined for a square matrix (i.e. n×n). Geometrically, the trace can be interpreted as the infinitesimal change in volume (as the derivative of the determinant), which is made precise in Jacobi's formula. The use of the term trace arises from the German term Spur (cognate with the English spoor), which, as a function in mathematics, is often abbreviated to "Sp".
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130354336
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9786130354336
- Format Kartonierter Einband
- ISBN 978-613-0-35433-6
- Titel Trace (Linear Algebra)
- Untertitel Linear Algebra, Matrix (Mathematics), Main Diagonal, Change of Basis, Dimension (Vector Space), Skew-Symmetric Matrix, Symmetric Matrix, Trace Class, Hilbert Space
- Gewicht 161g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 96
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung