Trajectory Optimisation via Reinforcement Learning

CHF 47.55
Auf Lager
SKU
RDHFFEBBDU4
Stock 1 Verfügbar
Geliefert zwischen Do., 15.01.2026 und Fr., 16.01.2026

Details

From the emergence of commercial applications such as on-demand imagery and global internet service to the necessity of satellite servicing and active space debris removal, the level of complexity in mission design has skyrocketed. All these different applications have directed the evolution of the technology toward the need for autonomous spacecraft that can operate independently of human control. As such, artificial intelligence has rapidly emerged as being a promising field allowing greater robotic autonomy and innovative decision making. While new autonomous techniques have enabled faster and larger numbers of spacecraft operations, there is still a valid concern for the safety of the missions during proximity manoeuvres.This Master's thesis investigates the use of the Reinforcement Learning algorithm Proximal Policy Optimization for achieving a planar Autonomous Rendezvous, Proximity Operation, and Docking manoeuvre with an under-actuated CubeSat. Together with the safety considerations, the different control objectives throughout the three phases reflect the complexity necessary for safe and efficient operations.

Autorentext

Matthieu Paris is a French engineer graduated from Ecole Centrale de Nantes (France) and Politecnico di Milano (Italy). He built a strong engineering culture through his academic and professional experiences. This thesis represents his final work at Politecnico in the Master of Science in Space Engineering.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786204718385
    • Anzahl Seiten 80
    • Genre Cars
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Untertitel Safe Autonomous Rendezvous, Proximity Operation, and Docking for under-actuated CubeSat via Reinforcement Learning
    • Größe H220mm x B150mm
    • Jahr 2021
    • EAN 9786204718385
    • Format Kartonierter Einband
    • ISBN 978-620-4-71838-5
    • Titel Trajectory Optimisation via Reinforcement Learning
    • Autor Matthieu Paris

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470