Tridiagonal Matrix

CHF 49.55
Auf Lager
SKU
5HP0DUF031I
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

High Quality Content by WIKIPEDIA articles! In linear algebra, a tridiagonal matrix is a matrix that is "almost" a diagonal matrix. To be exact: a tridiagonal matrix has nonzero elements only in the main diagonal, the first diagonal below this, and the first diagonal above the main diagonal. A tridiagonal matrix is of Hessenberg type. Although a general tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when solving linear algebra problems have one of these properties. Furthermore, if a real tridiagonal matrix A satisfies ak,k+1 ak+1,k 0, so that the signs of its entries are symmetric, then it is similar to a Hermitian matrix, and hence, its eigenvalues are real. The latter conclusion continues to hold if we replace the condition ak,k+1 ak+1,k 0 by ak,k+1 ak+1,k 0. The set of all n × n tridiagonal matrices form a 3n-2 dimensional vector space.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131142062
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131142062
    • Format Fachbuch
    • Titel Tridiagonal Matrix
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470