Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Tridiagonal Matrix Algorithm
CHF 49.40
Auf Lager
SKU
BBI73RL89H0
Geliefert zwischen Fr., 23.01.2026 und Mo., 26.01.2026
Details
High Quality Content by WIKIPEDIA articles! In numerical linear algebra, the tridiagonal matrix algorithm (TDMA), also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. For such systems, the solution can be obtained in O(n) operations instead of O(n3) required by Gaussian elimination. A first sweep eliminates the ai's, and then an (abbreviated) backward substitution produces the solution. Example of such matrices commonly arise from the discretization of 1D Poisson equation (e.g., the 1D diffusion problem) and natural cubic spline interpolation. The following C99 function will solve a general tridiagonal system. Note that the index i here is zero based, in other words i = 0, 1, dots, n - 1 where n is the number of unknowns.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131142079
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131142079
- Format Fachbuch
- Titel Tridiagonal Matrix Algorithm
- Herausgeber Betascript Publishing
- Anzahl Seiten 112
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung