Two-Scale Approach to Oscillatory Singularly Perturbed Transport Equations

CHF 46.30
Auf Lager
SKU
AINPG7F84OQ
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Provides a very affordable approach to the homogenization theory
Gives a complete vision - from theory to numerics - of consequences of strong oscillations in transport phenomena Contains several applications from environment questions to Iter plasmas


Provides a very affordable approach to the homogenization theory Gives a complete vision - from theory to numerics - of consequences of strong oscillations in transport phenomena Contains several applications from environment questions to Iter plasmas

Autorentext
Emmanuel Frénod is Professor of Applied Mathematics at Université Bretagne Sud.

Zusammenfassung
Provides a very affordable approach to the homogenization theory
Gives a complete vision - from theory to numerics - of consequences of strong oscillations in transport phenomena Contains several applications from environment questions to Iter plasmas


Inhalt
I Two-Scale Convergence.- 1 Introduction.- 1.1 First Statements on Two-Scale Convergence.- 1.2 Two-Scale Convergence and Homogenization.- 1.2.1 How Homogenization Led to the Concept of Two-Scale Convergence.- 1.2.2 A Remark Concerning Periodicity.- 1.2.3 A Remark Concerning Weak-* Convergence.- 2 Two-Scale Convergence - Definition and Results.- 2.1 Background Material on Two-Scale Convergence.- 2.1.1 Definitions.- 2.1.2 Link with Weak Convergence.- 2.2 Two-Scale Convergence Criteria.- 2.2.1 Injection Lemma.- 2.2.2 Two-Scale Convergence Criterion.- 2.2.3 Strong Two-Scale Convergence Criterion.- 3 Applications.- 3.1 Homogenization of ODE.- 3.1.1 Textbook Case, Setting and Asymptotic Expansion.- 3.1.2 Justification of Asymptotic Expansion Using Two-Scale Convergence.- 3.2 Homogenization of Singularly-Perturbed ODE.- 3.2.1 Equation of Interest and Setting.- 3.2.2 Asymptotic Expansion Results.- 3.2.3 Asymptotic Expansion Calculations.- 3.2.4 Justification Using Two-Scale Convergence I: Results.- 3.2.5 Justification Using Two-Scale Convergence II: Proofs.- 3.3 Homogenization of Hyperbolic PDE.- 3.3.1 Textbook Case and Setting.- 3.3.2 Order-0 Homogenization.- 3.3.3 Order-1 Homogenization.- 3.4 Homogenization of Singularly-Perturbed Hyperbolic PDE.- 3.4.1 Equation of Interest and Setting.- 3.4.2 An a Priori Estimate.- 3.4.3 Weak Formulation with Oscillating Test Functions.- 3.4.4 Order-0 Homogenization - Constraint.- 3.4.5 Order-0 Homogenization - Equation for V.- 3.4.6 Order-1 Homogenization - Preparations: Equations for U and u.- 3.4.7 Order-1 Homogenization - Strong Two-Scale Convergence of u".- 3.4.8 Order-1 Homogenization - The Function W1.- 3.4.9 Order-1 Homogenization - A Priori Estimate and Convergence.- 3.4.10 Order-1 Homogenization - Constraint.- 3.4.11 Order-1 Homogenization - Equation for V1.- 3.4.12 Concerning Numerics.- II Two-Scale Numerical Methods.- 4 Introduction.- 5 Two-Scale Method for Object Drift with Tide.- 5.1 Motivation and Model.- 5.1.1 Motivation.- 5.1.2 Model of Interest.- 5.2 Two-Scale Asymptotic Expansion.- 5.2.1 Asymptotic Expansion.- 5.2.2 Discussion.- 5.3 Two-Scale Numerical Method.- 5.3.1 Construction of the Two-Scale Numerical Method.- 5.3.2 Validation of the Two-Scale Numerical Method.- 6 Two-Scale Method for Beam.- 6.1 Some Words About Beams and Model of Interest.- 6.1.1 Beams.- 6.1.2 Equations of Interest.- 6.1.3 Two-Scale Convergence.- 6.2 Two-Scale PIC Method.- 6.2.1 Formulation of the Two-Scale Numerical Method.- 6.2.2 Numerical Results.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319646671
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st ed. 2017
    • Anzahl Seiten 126
    • Herausgeber Springer-Verlag GmbH
    • Größe H235mm x B155mm
    • Jahr 2017
    • EAN 9783319646671
    • Format Kartonierter Einband
    • ISBN 978-3-319-64667-1
    • Veröffentlichung 06.10.2017
    • Titel Two-Scale Approach to Oscillatory Singularly Perturbed Transport Equations
    • Autor Emmanuel Frénod
    • Untertitel Lecture Notes in Mathematics 2190
    • Gewicht 2234g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470