Ubiquitination PTM Sites Prediction via Random Forest Algorithm

CHF 63.80
Auf Lager
SKU
1LS0LGEUQ4L
Stock 1 Verfügbar
Geliefert zwischen Fr., 07.11.2025 und Mo., 10.11.2025

Details

Proteomics is the modern research window in Bioinformatics for drug discovery and personalized medicine. The post-translation modification (PTM) site prediction is one of the top significant research wings in the Proteomics. There are more than 200 PTM sites in the literature, and the ubiquitination is one of them. It can involve in lots of biological processes and closely implicated with various diseases. The identification of ubiquitination site is an important task for understanding the mechanisms of disease due to ubiquitination. However, the identification of ubiquitination sites in experimental approaches is time consuming and costly. As an alternative, computational identification is more useful and reliable. The random forest (RF) algorithm used with some encoding schemes for feature selection and to develop a predictor for identification of ubiquitination PTM sites. Random forest is the efficient statistical machine learning tool for multivariate classification and regression. The RF based method achieves significantly better performances for prediction of protein ubiquitination PTM sites.

Autorentext

Md. Shakil Ahmed is a Researcher and Fiction Writer. He Received his B.Sc and M.Sc in Statistics and Bioinformatics from the University of Rajshahi, Bangladesh. He has published 6 articles in the international journals with good ISI impact factor and 9 full length & 20 abstract articles in the international conference proceedings.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786134923200
    • Genre Maths
    • Anzahl Seiten 140
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T9mm
    • Jahr 2018
    • EAN 9786134923200
    • Format Kartonierter Einband
    • ISBN 6134923206
    • Veröffentlichung 09.01.2018
    • Titel Ubiquitination PTM Sites Prediction via Random Forest Algorithm
    • Autor Shakil Ahmed , Selim Reza , .. Kamruzzaman
    • Gewicht 227g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470