Unsupervised Learning Algorithms

CHF 151.35
Auf Lager
SKU
6F4CJ07L3IJ
Stock 1 Verfügbar
Geliefert zwischen Do., 13.11.2025 und Fr., 14.11.2025

Details

This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest includeanomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.


Contains the state-of-the-art in unsupervised learning in a single comprehensive volume Features numerous step-by-step tutorials help the reader to learn quickly

Inhalt
Introduction.- Feature Construction.- Feature Extraction.- Feature Selection.- Association Rule Learning.- Clustering.- Anomaly/Novelty/Outlier Detection.- Evaluation of Unsupervised Learning.- Applications.- Conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319795904
    • Genre Elektrotechnik
    • Auflage Softcover reprint of the original 1st edition 2016
    • Editor M. Emre Celebi, Kemal Aydin
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 568
    • Größe H235mm x B155mm x T31mm
    • Jahr 2018
    • EAN 9783319795904
    • Format Kartonierter Einband
    • ISBN 3319795902
    • Veröffentlichung 26.05.2018
    • Titel Unsupervised Learning Algorithms
    • Gewicht 850g
    • Herausgeber Springer

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470