Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Using Mathematics to Understand Biological Complexity
Details
This volume tackles a variety of biological and medical questions using mathematical models to understand complex system dynamics. Working in collaborative teams of six, each with a senior research mentor, researchers developed new mathematical models to address questions in a range of application areas. Topics include retinal degeneration, biopolymer dynamics, the topological structure of DNA, ensemble analysis, multidrug-resistant organisms, tumor growth modeling, and geospatial modeling of malaria. The work is the result of newly formed collaborative groups begun during the Collaborative Workshop for Women in Mathematical Biology hosted by the Institute of Pure and Applied Mathematics at UCLA in June 2019. Previous workshops in this series have occurred at IMA, NIMBioS, and MBI.
Reports on current collaborative research in mathematical biology Showcases how mathematics is used to solve a variety of specific problems originating in biology and medicine Features a wide selection of topics
Autorentext
Rebecca Segal is Associate Professor at the Department of Mathematics and Applied Mathematics at Virginia Commonwealth University, USA. She holds a PhD in Applied Mathematics from the North Carolina State University.
Blerta Shtylla is Assistant Professor at the Department of Mathematics at Pomona College. She holds a PhD in Mathematics from the University of Utah.
Suzanne Sindi is Associate Professor at the Department of Applied Mathematics at University of California, Merced. She holds a PhD in Mathematics from the University of Maryland, College Park.
Inhalt
- Collaborative Workshop for Women in Mathematical Biology (R. Segal, B. Shtylla, S. Sindi).- 2. Connecting Actin Polymer Dynamics Across Multiple Scales (C. Copos, B. Bannish, K. Gasior, R.L. Pinals, M.W. Rostami, A.T. Dawes).- 3. Modeling RNA:DNA Hybrids with Formal Grammars (N. Jonoska, N. Obatake, S. Poznanovic, C. Price, M. Riehl, M. Vazquez).- 4. Secondary Structure Ensemble Analysis via Community Detection (H. Du, M.M. Ferrari, C. Heitsch, F. Hurley, C.V. Mennicke, B.D. Sullivan, and B. Xu.)- 5. How Do Interventions Impact Malaria Dynamics Between Neighboring Countries? A Case Study with Botswana and Zimbabwe (F. Agusto, A. Goldberg, O. Ortega, Joan Ponce+ , Sofya Zaytseva, S. Sindi, Sally Blower).- 6. Investigating the Impact of Combination Phage and Antibiotic Therapy (S. Banuelos, H. Gulbudak, M.A. Horn, Q. Huang, A. Nandi, H Ryu, R. Segal).- 7. Mathematical Modeling of Retinal Degeneration (E. Camacho, A. Dobreva, K. Larripa, A. Radulescu, D. Schmidt,I. Trejo).- 8. A Framework for Performing Data-Driven Modeling of Tumor Growth with Radiotherapy Treatment (H. Cho, A.L. Lewis, K.M. Storey, R. Jennings, B. Shtylla, A.M. Reynolds, H.M. Byrne).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030571313
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2021
- Editor Rebecca Segal, Suzanne Sindi, Blerta Shtylla
- Anzahl Seiten 224
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T13mm
- Jahr 2021
- EAN 9783030571313
- Format Kartonierter Einband
- ISBN 3030571319
- Veröffentlichung 31.12.2021
- Titel Using Mathematics to Understand Biological Complexity
- Untertitel From Cells to Populations
- Gewicht 347g
- Sprache Englisch