Valya Algebra

CHF 43.10
Auf Lager
SKU
6VBJ9LPR15F
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

High Quality Content by WIKIPEDIA articles! In abstract algebra, a Valya algebra (or Valentina algebra) is a nonassociative algebra M over a field F whose multiplicative binary operation g satisfies the following axioms: We say that M is a Valya algebra if the commutant of this algebra is a Lie subalgebra. Each Lie algebra is a Valya algebra. There is the following relationship between the commutant-associative algebra and Valentina algebra. The replacement of the multiplication g(A,B) in an algebra M by the operation of commutation [A,B]=g(A,B)-g(B,A), makes it into the algebra M( ). If M is a commutant-associative algebra, then M( ) is a Valya algebra. A Valya algebra is a generalization of a Lie algebra. Let us give the following examples regarding Valya algebras. Every finite Valya algebra is the tangent algebra of an analytic local commutant-associative loop (Valya loop) as each finite Lie algebra is the tangent algebra of an analytic local group (Lie group). This is the analog of the classical correspondence between analytic local groups (Lie groups) and Lie algebras.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131124075
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131124075
    • Format Fachbuch
    • Titel Valya Algebra
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470