Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Van der Waerden Number
CHF 37.20
Auf Lager
SKU
ETLCTTG9K9V
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026
Details
High Quality Content by WIKIPEDIA articles! Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W(r,k). Van der Waerden numbers are primitive recursive, as proved by Shelah; in fact he proved that they are (at most) on the fifth level mathcal{E}^5 of the Grzegorczyk hierarchy. W(1,k)=k for any integer k, since one color produces only trivial colorings RRRRR...RRR (for the single color denoted R). W(r,2)=r+1, since we may construct a coloring that avoids arithmetic progressions of length 2 by using each color at most once, but once we use a color twice, a length 2 arithmetic progression is formed (e.g., for r=3, the longest coloring we can get that avoids an arithmetic progression of length 2 is RGB).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131119217
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131119217
- Format Fachbuch
- Titel Van der Waerden Number
- Herausgeber Betascript Publishing
- Anzahl Seiten 64
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung