Variational Integrator

CHF 43.10
Auf Lager
SKU
1FHFGTPF0B0
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

High Quality Content by WIKIPEDIA articles! Variational integrators are numerical integrators for Hamiltonian systems derived from the Euler-Lagrange equations of a discretized Hamilton's principle. Variational integrators are momentum-preserving and symplectic. Consider a mechanical system with a single particle degree of freedom described by the Lagrangian L(t,q,v) = frac{1}{2} m v^2 - V(q), where m is the mass of the particle, and V is a potential. To construct a variational integrator for this system, we begin by forming the discrete Lagrangian. The discrete Lagrangian approximates the action for the system over a short time interval: Ldleft(t0, t1, q0, q1right) = frac{t1 - t0}{2} left[ Lleft(t0, q0, frac{q1-q0}{t1-t0}right) + Lleft(t1, q1, frac{q1-q0}{t1-t0}right) right] approx int{t0}^{t1} dt, L(t, q(t), v(t)) . Here we have chosen to approximate the time integral using the trapezoid method, and we use a linear approximation to the trajectory, q(t) approx frac{q1 - q0}{t1-t0} left( t - t0 right) + q0 between t0 and t1, resulting in a constant velocity v approx left(q1 - q0 right)/left(t1 - t0 right).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131122064
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131122064
    • Format Fachbuch
    • Titel Variational Integrator
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470