Vector Quantization based Speech Recognition System

CHF 61.80
Auf Lager
SKU
ICR9EI1UBG0
Stock 1 Verfügbar
Geliefert zwischen Di., 23.09.2025 und Mi., 24.09.2025

Details

Automatic Speech Recognition (ASR) has progressed considerably over the past several decades, but still has not achieved the potential imagined at its very beginning. Almost all of the existing applications of ASR systems are PC based. This work is an attempt to develop a speech recognition system that is independent of any PC support and is small enough in size to be used in a daily use consumer appliance. The proposed system would recognize isolated word utterances from a limited vocabulary, provide speaker independence, require less memory and be cost-efficient compared to present ASR systems. In this system, isolated word recognition is performed by using Vector Quantization (VQ) and Mel-Frequency Cepstral Coefficient (MFCC). The final system has been implemented on a vero board with an ATMEGA32 microcontroller. Learning and recognition algorithm have been used to recognize the speech utterances.

Autorentext

Md. Rabiul Islam was born in Khulna, a southern city of Bangladesh. He has completed his post graduation in Sociology from Khulna University, Bangladesh. At present he is working as Research Assistant in Transparency International Bangladesh.He desires to continue his research on different social issues like poverty, gender and social development.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 137g
    • Untertitel Implementation of VQ based Isolated Word Recognition with Cepstral Coefficients
    • Autor Md. Rabiul Islam , Md. Sohrab Mahmud , Md. Fayzur Rahman
    • Titel Vector Quantization based Speech Recognition System
    • Veröffentlichung 04.06.2010
    • ISBN 3838368916
    • Format Kartonierter Einband
    • EAN 9783838368917
    • Jahr 2010
    • Größe H220mm x B150mm x T5mm
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 80
    • GTIN 09783838368917

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.