Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Visual Quality Assessment by Machine Learning
Details
The book encompasses the state-of-the-art visual quality assessment (VQA) and learning based visual quality assessment (LB-VQA) by providing a comprehensive overview of the existing relevant methods. It delivers the readers the basic knowledge, systematic overview and new development of VQA. It also encompasses the preliminary knowledge of Machine Learning (ML) to VQA tasks and newly developed ML techniques for the purpose. Hence, firstly, it is particularly helpful to the beginner-readers (including research students) to enter into VQA field in general and LB-VQA one in particular. Secondly, new development in VQA and LB-VQA particularly are detailed in this book, which will give peer researchers and engineers new insights in VQA.
Presents the emerging techniques of learning based visual quality assessment Highlights machine learning techniques and their applications in visual quality assessment Includes a number of real-world examples that readers can implement in their own work Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Fundamental knowledges of machine learning.- Image features and feature processing.- Feature pooling by learning.- Metrics fusion.- Summary and remarks for future research.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789812874672
- Genre Elektrotechnik
- Auflage 2015
- Sprache Englisch
- Lesemotiv Verstehen
- Anzahl Seiten 148
- Größe H235mm x B155mm x T9mm
- Jahr 2015
- EAN 9789812874672
- Format Kartonierter Einband
- ISBN 9812874674
- Veröffentlichung 27.05.2015
- Titel Visual Quality Assessment by Machine Learning
- Autor Long Xu , C. -C. Jay Kuo , Weisi Lin
- Untertitel SpringerBriefs in Electrical and Computer Engineering - SpringerBriefs in Signal
- Gewicht 236g
- Herausgeber Springer Nature Singapore