Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Vitushkin's Conjecture for Removable Sets
Details
Vitushkin's conjecture, a special case of Painlevé's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arc length measure. Chapters 6-8 of this carefully written text present a major recent accomplishment of modern complex analysis, the affirmative resolution of this conjecture. Four of the five mathematicians whose work solved Vitushkin's conjecture have won the prestigious Salem Prize in analysis. Chapters 1-5 of this book provide important background material on removability, analytic capacity, Hausdorff measure, arc length measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. Although standard notation is used throughout, there is a symbol glossary at the back of the book for the reader's convenience. This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis.
Presents a complete proof of a major recent accomplishment of modern complex analysis, the affirmative resolution of Vitushkin's conjecture Includes Melnikov and Verdera's proof of Denjoy's conjecture Reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture Contains important background material on removability, analytic capacity, Hausdorff measure, arclength measure, and Garabedian duality Includes supplementary material: sn.pub/extras
Autorentext
James J. Dudziak received his Ph.D from Indiana University and is currently a visiting associate professor at Michigan State University at Lyman Briggs College. He published six excellent papers in good journals from 1984 to 1990 when he received tenure at Bucknell University.
Inhalt
Removable Sets and Analytic Capacity.- Removable Sets and Hausdorff Measure.- Garabedian Duality for Hole-Punch Domains.- Melnikov and Verdera's Solution to the Denjoy Conjecture.- Some Measure Theory.- A Solution to Vitushkin's Conjecture Modulo Two Difficult Results.- The T(b) Theorem of Nazarov, Treil, and Volberg.- The Curvature Theorem of David and Léger.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441967084
- Sprache Englisch
- Größe H237mm x B159mm x T22mm
- Jahr 2010
- EAN 9781441967084
- Format Kartonierter Einband
- ISBN 978-1-4419-6708-4
- Veröffentlichung 23.09.2010
- Titel Vitushkin's Conjecture for Removable Sets
- Autor James Dudziak
- Untertitel Universitext
- Gewicht 513g
- Herausgeber Springer-Verlag GmbH
- Anzahl Seiten 332
- Lesemotiv Verstehen
- Genre Mathematik