Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Water Demand Prediction
Details
Prediction of future water demand is critical to economies, communities, ecosystems, cost-effective, sustainable management and expansion of urban water supply infrastructure. Its importance increases when water must be allocated among competing users in the rapidly growing cities. This study compares Time series analysis and Artificial Neural Networks (ANNs) as techniques for water demand prediction for a case study city. The effects of meterological factors on domestic water demand prediction were taken in consideration in order to find the best model. Multilayer Perceptron(MLP), Cascade correlation (CCNN) and General Regression Neural Network (GRNN) were applied. The combination between Time Series and ANN techniques was also studied.
Autorentext
Lecturer and Ph.D Candidate in Water Resources Engineering at King Fahd University of Petroleum and Minerals(KFUPM). A Member of the Water Research Group at KFUPM. Interested in some research areas such as GIS-water applications, Watershed modeling, Water Distribution Systems, Forecasting Water Demand and ANN Techniques.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639304558
- Sprache Englisch
- Genre Allgemeines & Lexika
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9783639304558
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-30455-8
- Titel Water Demand Prediction
- Autor Amin Abo-Monasar
- Untertitel Artificial Neural Network Approach
- Gewicht 161g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 96