Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Waves in Continuous Media
Details
Starting with the basic notions and facts of the mathematical theory of waves illustrated by numerous examples, exercises, and methods of solving typical problems Chapters 1 & 2 show e.g. how to recognize the hyperbolicity property, find characteristics, Riemann invariants and conservation laws for quasilinear systems of equations, construct and analyze solutions with weak or strong discontinuities, and how to investigate equations with dispersion and to construct travelling wave solutions for models reducible to nonlinear evolution equations.
Chapter 3 deals with surface and internal waves in an incompressible fluid. The efficiency of mathematical methods is demonstrated on a hierarchy of approximate submodels generated from the Euler equations of homogeneous and non-homogeneous fluids. The self-contained presentations of the material is complemented by 200+ problems of different level of difficulty, numerous illustrations, and bibliographical recommendations.
This book aims to promote a problem solving approach to teaching the wave propagation in continuous media This book contains more than 200 problems covering mostly compressible fluid mechanics and surface wave propagation in incompressible (homogeneous or non) fluids Answers each problem considered as a new material to deeper understanding qualitative and quantitative properties of wave models rather than a simple application of the methods presented
Autorentext
Sergey Gavrilyuk is professor at the Aix-Marseille III University, Marseille, France
Nikolai MAKARENKO is professor at the Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy, Novosibirsk, Russia
Sergey SUKHININ is professor at the Lavrentyev Institute of Hydrodynamics Russian Academy of Sciences, Novosibirsk, Russia
Inhalt
- Hyperbolic waves.- 2. Dispersive waves.- 3. Water waves.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319492766
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2017
- Anzahl Seiten 152
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T9mm
- Jahr 2017
- EAN 9783319492766
- Format Kartonierter Einband (Kt)
- ISBN 3319492764
- Veröffentlichung 03.02.2017
- Titel Waves in Continuous Media
- Autor S. L. Gavrilyuk , S. V. Sukhinin , N. I. Makarenko
- Untertitel Lecture Notes in Geosystems Mathematics and Computing
- Gewicht 242g
- Sprache Englisch