Weak Operator Topology
CHF 46.40
Auf Lager
SKU
3ORLBRH0SV6
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025
Details
High Quality Content by WIKIPEDIA articles! In functional analysis, the weak operator topology, often abbreviated WOT, is the weakest topology on the set of bounded operators on a Hilbert space H such that the functional sending an operator T to the complex number is continuous for any vectors x and y in the Hilbert space. The strong operator topology, or SOT, on B(H) is the topology of pointwise convergence. Because the inner product is a continuous function, the SOT is stronger than WOT. The following example shows that this inclusion is strict. Let H = 2(N) and consider the sequence {Tn} where T is the unilateral shift. An application of Cauchy-Schwarz shows that Tn 0 in WOT. But clearly Tn does not converge to 0 in SOT.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130363437
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9786130363437
- Format Fachbuch
- ISBN 978-613-0-36343-7
- Titel Weak Operator Topology
- Untertitel Functional Analysis, Topology, Bounded Operator, Functional (mathematics), Continuous Function (topology), Operator Topology, Strong Operator Topology, Polarization Identity
- Gewicht 137g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 80
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung