Weakly Harmonic Function

CHF 43.20
Auf Lager
SKU
FD9766P4PF8
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

High Quality Content by WIKIPEDIA articles! Weakly harmonic is actually equivalent to the seemingly stronger harmonic condition. In mathematics, a weak solution (also called a generalized solution) to an ordinary or partial differential equation is a function for which the derivatives appearing in the equation may not all exist but which is nonetheless deemed to satisfy the equation in some precisely defined sense. There are many different definitions of weak solution, appropriate for different classes of equations. One of the most important is based on the notion of distributions. Avoiding the language of distributions, one starts with a differential equation and rewrites it in such a way that no derivatives of the solution of the equation show up (the new form is called the weak formulation, and the solutions to it are called weak solutions). Somewhat surprisingly, a differential equation may have solutions which are not differentiable; and the weak formulation allows one to find such solutions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130336813
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T6mm
    • Jahr 2010
    • EAN 9786130336813
    • Format Fachbuch
    • ISBN 978-613-0-33681-3
    • Titel Weakly Harmonic Function
    • Untertitel Mathematics, Definition, Support (mathematics), Function (mathematics), Laplace Operator, Weak Derivative, Derivative, Weak Solution, Weak Formulation, Calculus of Variations
    • Gewicht 153g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470