Welch's t Test

CHF 43.20
Auf Lager
SKU
76NC9P6LQF9
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

High Quality Content by WIKIPEDIA articles! In statistics, Welch's t test is an adaptation of Student's t-test intended for use with two samples having possibly unequal variances. As such, it is an approximate solution to the Behrens Fisher problem. Welch's t-test defines the statistic t by the following formula: t = {overline{X}1 - overline{X}2 over sqrt{ {s1^2 over N1} + {s2^2 over N2} }}, where overline{X}{i}, s{i}^{2} and Ni are the ith sample mean, sample variance and sample size, respectively. Unlike in Student's t-test, the denominator is not based on a pooled variance estimate. The degrees of freedom associated with this variance estimate is approximated using the Welch-Satterthwaite equation: nu = {{left( {s1^2 over N1} + {s2^2 over N2}right)^2 } over {{s1^4 over N1^2 cdot nu1}+{s2^4 over N2^2 cdot nu2}}}={{left( {s1^2 over N1} + {s2^2 over N2}right)^2 } over {{s1^4 over N1^2 cdot left({N1-1}right)}+{s2^4 over N2^2 cdot left({N2-1}right)}}} ., Here i = Ni 1, the degrees of freedom associated with the ith variance estimate.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131184031
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131184031
    • Format Fachbuch
    • Titel Welch's t Test
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470