Weyl Character Formula

CHF 43.15
Auf Lager
SKU
6CNPMHOSCB4
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It is named after Hermann Weyl, who proved it in the late 1920s. By definition, the character of a representation r of G is the trace of r(g), as a function of a group element g in G. The irreducible representations in this case are all finite-dimensional (this is part of the Peter-Weyl theorem); so the notion of trace is the usual one from linear algebra. Knowledge of the character of r is a good substitute for r itself, and can have algorithmic content. Weyl's formula is a closed formula for the , in terms of other objects constructed from G and its Lie algebra. The representations in question here are complex, and so without loss of generality are unitary representations; irreducible therefore means the same as indecomposable, i.e. not a direct sum of two subrepresentations.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130366186
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2010
    • EAN 9786130366186
    • Format Fachbuch
    • ISBN 978-613-0-36618-6
    • Titel Weyl Character Formula
    • Untertitel Mathematics, Representation Theory, Compact Group, Weight (representation theory), Hermann Weyl, Unitary Representation, Lie Algebra, Simple Module, Ring Theory
    • Gewicht 147g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470