Whipple Formulae
CHF 46.35
Auf Lager
SKU
M9JGMGMM6EJ
Geliefert zwischen Do., 09.10.2025 und Fr., 10.10.2025
Details
High Quality Content by WIKIPEDIA articles! In the theory of special functions, Whipple's transformation for Legendre functions, named after Francis John Welsh Whipple, arise from a general expression, concerning associated Legendre functions. These formulae have been presented previously in terms of a viewpoint aimed at spherical harmonics, now that we view the equations in terms of toroidal coordinates, whole new symmetries of Legendre functions arise. For associated Legendre functions of the first and second kind, P{-mu-frac12}^{-nu-frac12}biggl(frac{z}{sqrt{z^2-1}}biggr)= frac{(z^2-1)^{1/4}e^{-imupi} Qnu^mu(z)}{(pi/2)^{1/2}Gamma(nu+mu+1)} and Q{-mu-frac12}^{-nu-frac12}biggl(frac{z}{sqrt{z^2-1}}biggr)= -i(pi/2)^{1/2}Gamma(-nu-mu)(z^2-1)^{1/4}e^{-inupi} Pnu^mu(z). These expressions are valid for all parameters , , and z. By shifting the complex degree and order in an appropriate fashion, we obtain Whipple formulae for general complex index interchange of general associated Legendre functions of the first and second kind.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131192050
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131192050
- Format Fachbuch
- Titel Whipple Formulae
- Herausgeber Betascript Publishing
- Anzahl Seiten 88
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung