Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Whittaker Shannon Interpolation Formula
Details
High Quality Content by WIKIPEDIA articles! The Whittaker Shannon interpolation formula is a method to reconstruct a continuous-time bandlimited signal from a set of equally spaced samples. The interpolation formula, as it is commonly called, dates back to works of E. Borel in 1898, and E. T. Whittaker in 1915, and was cited from works of J. M. Whittaker in 1935 in the formulation of the Nyquist Shannon sampling theorem by Claude Shannon in 1949. It is also commonly called Shannon's interpolation formula and Whittaker's interpolation formula. E. T. Whittaker, who published it in 1915, called it the Cardinal series.
Klappentext
High Quality Content by WIKIPEDIA articles! The Whittaker-Shannon interpolation formula is a method to reconstruct a continuous-time bandlimited signal from a set of equally spaced samples. The interpolation formula, as it is commonly called, dates back to works of E. Borel in 1898, and E. T. Whittaker in 1915, and was cited from works of J. M. Whittaker in 1935 in the formulation of the Nyquist-Shannon sampling theorem by Claude Shannon in 1949. It is also commonly called Shannon's interpolation formula and Whittaker's interpolation formula. E. T. Whittaker, who published it in 1915, called it the Cardinal series.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130320911
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2010
- EAN 9786130320911
- Format Fachbuch
- ISBN 978-613-0-32091-1
- Titel Whittaker Shannon Interpolation Formula
- Untertitel Continuous Signal, Bandlimited, Nyquist-Shannon Sampling Theorem, Émile Borel, E. T. Whittaker, John Macnaughten Whittaker, Sinc Function, Sampling Rate
- Gewicht 195g
- Herausgeber Betascript Publishers
- Anzahl Seiten 120
- Genre Mathematik