Wigner's Classification
CHF 53.20
Auf Lager
SKU
G8E52N970GN
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics and theoretical physics, Wigner's classification is a classification of the nonnegative energy irreducible unitary representations of the Poincaré group, which have sharp mass eigenvalues. It was proposed by Eugene Wigner, for reasons coming from physics?see the article particle physics and representation theory.The mass mequiv sqrt{P^2} is a Casimir invariant of the Poincaré group. So, we can classify the representations according to whether m 0, m = 0 but P0 0 and m = 0 and mathbf{P}=0.For the first case, we note that the eigenspace (see generalized eigenspaces of unbounded operators) associated with P0 = m and Pi = 0 is a representation of SO(3). In the ray interpretation, we can go over to Spin(3) instead. So, massive states are classified by an irreducible Spin(3) unitary and a positive mass, m.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130512415
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786130512415
- Format Fachbuch
- Titel Wigner's Classification
- Herausgeber Betascript Publishing
- Anzahl Seiten 116
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung