Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Word Learning with Prosodic information
Details
Previous studies have shown that infants use prosodic information as an aid for discriminating and recognising words. The present work is based on a word learning model which automatically extracts target words from raw speech input paired with a label for the target word. This model was enhanced by incorporating prosodic information. In addition, an unsupervised model is developed which does not rely on a label of any kind. Although prosodic information could not improve the performance of the unsupervised model, it is shown that the incorporation of pitch leads to an increase of performance in the supervised case and that the unsupervised model yields effective results.
Autorentext
Born 1988 in Rostock, Germany, Daniel Berndt studied Cognitive Science in Osnabrück and Artificial Intelligence in Edinburgh. He became co-founder of Codeus, a developing company applying techniques from AI and Computational Linguistics and continues to work in his field of interest.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639314144
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9783639314144
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-31414-4
- Titel Word Learning with Prosodic information
- Autor Daniel Berndt
- Untertitel Applying non-verbal Cues to enhance Speech Recognition Performance
- Gewicht 149g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 88
- Genre Informatik