A Biologically Inspired Optical Flow System

CHF 57.55
Auf Lager
SKU
RGBEC98QKHJ
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Optical flow is possibly the most used method for motion segmentation. However its application is often restricted to off-line processing as it requires extensive computational resources and time. In this work, we explore an optical flow method derived from research on the vision system of diptereous insects. The proposed method, Biological Optical Flow (BioOF) was implemented using a series of filters, and therefore is much faster than any existing machine-coded optical flow algorithm. Like other optical flow methods, the output of the BioOF has two components: horizontal and vertical optical flows -- both of them are combined in order to get a better final result in terms of motion segmentation. The result is a framework that can extract an excellent contour of the moving objects segmented out from the images. Finally the object contour is projected onto a Fourier feature space, leading to a representation of the object that is rotational and translational invariant. Over the Fourier feature space, various classification algorithms are investigated for object recognition.

Autorentext

Dr. DeSouza received a Ph.D. from Purdue University. He is with the ECE Depart at the University of Missouri. His research interests include robotic vision, computational intelligence, mobile robotics, and multi-view 3D vision. He is the chair of the IEEE-CIS MU Chapter and a member of the IEEE CIS, IEEE R&A, and IEEE SMC Societies.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783838341224
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2010
    • EAN 9783838341224
    • Format Kartonierter Einband
    • ISBN 3838341228
    • Veröffentlichung 25.01.2010
    • Titel A Biologically Inspired Optical Flow System
    • Autor Guilherme Desouza , Vishal Rijhwani
    • Untertitel An Application for Motion Segmentation and Object Identification
    • Gewicht 125g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 72
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470