A Comparison of Some Numerical Methods

CHF 61.30
Auf Lager
SKU
AF3V2DIV3BL
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

The main aim of book is to determine the efficiency of two numerical methods (Adomian decomposition method (ADM) and the method of lines (MOL) which depends on finite difference) for solving nonlinear systems of partial differential equations (PDEs). We modified the method of computing Adomian's polynomial to find the numerical solutions for these systems with less number of components and faster formula convergence when compared with the standard ADM while the other aim of this book is a comparison between the numerical results for ADM(standard and modified ADM) and MOL which does not require large computer memory and it has more effect with respect to the accuracy and convergence rapidity compared with the standard and modified ADM.

Autorentext

Faazah, L. Hassan Al-Qttrany has B. Sc.degree in Mathematics(1991-1992)from College: Education and University: Basrah and get M.Sc. degree in 2009 from same College and University, now she's Assist. lecturer in Mathematics department at same college and university.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659119378
    • Sprache Englisch
    • Auflage Aufl.
    • Größe H220mm x B150mm x T5mm
    • Jahr 2012
    • EAN 9783659119378
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-659-11937-8
    • Titel A Comparison of Some Numerical Methods
    • Autor Faazah Al-Qttrany
    • Untertitel For Solving Non-linear Sys. of PDEs
    • Gewicht 143g
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 84
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38