A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications

CHF 139.15
Auf Lager
SKU
UR2PUONM3OO
Stock 1 Verfügbar
Geliefert zwischen Mo., 23.02.2026 und Di., 24.02.2026

Details

In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.

The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects. The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover, a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani's fuzzy inference systems is introduced. This book addresses engineers, scientists, professors, students and post-graduate students, who are interested in and work with fuzzy clustering and its applications


Offers an interesting and original perspective on possibilistic clustering and uncertain data processing Features a well-balanced material and a down-to-the earth exposition Represents an important contribution to the rapidly growing body of knowledge in contemporary data analysis

Inhalt
Introduction.- Heuristic Algorithms of Possibilistic Clustering.- Clustering Approaches for the Uncertain Data.- Applications of the Heuristic Algorithms of Possibilistic Clustering.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642443015
    • Anzahl Seiten 227
    • Lesemotiv Verstehen
    • Genre Technology
    • Auflage 2013
    • Sprache Englisch
    • Herausgeber Springer Berlin Heidelberg
    • Gewicht 373g
    • Untertitel Studies in Fuzziness and Soft Computing 297
    • Größe H13mm x B154mm x T234mm
    • Jahr 2015
    • EAN 9783642443015
    • Format Kartonierter Einband
    • ISBN 978-3-642-44301-5
    • Titel A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications
    • Autor Dmitri A. Viattchenin

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38