Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
A Model Based Framework for Object Detection via Data Transformation
Details
The dynamic synthesis of nonlinear feature functions is a challenging problem in object detection. This book presents a combinatorial approach of genetic programming and the expectation maximization algorithm (GP-EM) to synthesize nonlinear feature functions automatically for the purpose of object detection. The EM algorithm investigates the use of Gaussian mixture which is able to model the behaviour of the training samples during an optimal GP search strategy. Based on the Gaussian probability assumption, the GP-EM method is capable of performing simultaneously dynamic feature synthesis and model-based generalization. The EM part of the approach leads to the application of the maximum likelihood (ML) operation which provides protection against inter-cluster data separation and thus exhibits improved convergence. The experimental results show that the approach improves the detection accuracy and efficiency of pattern object discovery, as compared to some state-of-the-art methods for object detection existing in the literature.
Autorentext
Peifang Guo:Postdoctoral researcher at University of Cincinnati in USA; Prabir Bhattacharya: Professor at University of Cincinnati in USA.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 64
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 113g
- Autor Peifang Guo , Prabir Bhattacharya
- Titel A Model Based Framework for Object Detection via Data Transformation
- Veröffentlichung 12.12.2013
- ISBN 3659494577
- Format Kartonierter Einband
- EAN 9783659494574
- Jahr 2013
- Größe H220mm x B150mm x T4mm
- GTIN 09783659494574