A Model Recommender System

CHF 77.95
Auf Lager
SKU
1TQQUO5DLOU
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

The contribution of the Hybrid Optimization driven RideNN for Software Reusability Estimation is that the C-RideNN algorithm uses the current Cat Swarm Optimization (CSO) together with the Rider Neural Network (RideNN) for training purposes. This approach consists of developing a technique for the software reuse prediction model to maintain optimal reuse of software components without the likelihood of aging and prone to failure. Criteria, such as complexity, cohesion, and coupling, are considered for reuse with a total of nine metrics. Estimation is performed with the proposed neural network algorithm based on Cat Swarm Rider (C-RideNN) optimization. The The C-RideNN algorithm is formulated by integrating the CSO with the ROA algorithm Estimating software reuse using NN-based optimization has been shown to produce an improved total of nine software-related metrics from software. Estimation of software reuse is done using the proposed C-RideNN algorithm. The C-RideNN algorithm estimates the software reuse factor.

Autorentext

Dr.Ramu Vankudoth, Ph.D., is working as Assistant Professor in the Department of Computer Science & Engineering - Data Science, Malla Reddy Engineering College(A), Secunderabad, Telangana. He obtained a Ph.D Degree from Kakatiya University in the area of Software Engineering.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786203926897
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 132
    • Genre Software
    • Sprache Englisch
    • Gewicht 215g
    • Untertitel with Efficient Taxonomy of Software Reusable Components
    • Autor Ramu Vankudoth , P. Shireesha
    • Größe H220mm x B150mm x T9mm
    • Jahr 2024
    • EAN 9786203926897
    • Format Kartonierter Einband
    • ISBN 6203926892
    • Veröffentlichung 12.12.2024
    • Titel A Model Recommender System

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470