Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
A Posteriori Error Analysis Via Duality Theory
Details
This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to m- suring, controlling and minimizing errors in modeling and numerical appr- imations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ([49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc. The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2.
There is no other book of its kind Includes supplementary material: sn.pub/extras
Inhalt
Preliminaries.- Elements of Convex Analysis, Duality Theory.- A Posteriori Error Analysis for Idealizations in Linear Problems.- A Posteriori Error Analysis for Linearizations.- A Posteriori Error Analysis for Some Numerical Procedures.- Error Analysis for Variational Inequalities of the Second Kind.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441936363
- Sprache Englisch
- Größe H235mm x B155mm
- Jahr 2010
- EAN 9781441936363
- Format Kartonierter Einband
- ISBN 978-1-4419-3636-3
- Veröffentlichung 06.12.2010
- Titel A Posteriori Error Analysis Via Duality Theory
- Autor Weimin Han
- Untertitel With Applications in Modeling and Numerical Approximations
- Gewicht 492g
- Herausgeber Springer
- Anzahl Seiten 302
- Lesemotiv Verstehen
- Genre Mathematik