Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
A quantum particle swarm optimization approach for feature selection
Details
This book represent a feature selection approach. Feature selection is a pre-processing step that plays an important role in data mining, allowing it to search a reduced subset of features from a large set of features by eliminating redundant and irrelevant features for performing the supervised classification task, all trying to maintain or improve classifier performance. The search for a subset of features is an NP-difficult optimization problem that can be solved by metaheuristics; we have been interested in the metaheuristics resulting from the intelligence in swarms for the features selection.
Autorentext
Sihem, Benkhaled
Benkhaled Sihem is a computer scientist, graduated from university of Abbes Laghrour - Khenchela, Algeria. Has a master degree in Software Engineering and Distributed Systems specialty (2017).She prepared a Ph.D thesis in the same specialty.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786200284433
- Sprache Englisch
- Größe H220mm x B220mm x T150mm
- Jahr 2019
- EAN 9786200284433
- Format Kartonierter Einband
- ISBN 978-620-0-28443-3
- Titel A quantum particle swarm optimization approach for feature selection
- Autor Benkhaled Sihem
- Untertitel Metaheuristics in Data classification, Datamining
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 76
- Genre Informatik