Abzählbarkeitsaxiome

CHF 36.85
Auf Lager
SKU
C85ID97P52U
Stock 1 Verfügbar
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026

Details

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! Im mathematischen Teilgebiet der Topologie gibt es zwei Endlichkeitsbedingungen an die betrachteten Räume, die als erstes bzw. zweites Abzählbarkeitsaxiom bezeichnet werden. Räume, die ein Abzählbarkeitsaxiom erfüllen, können aus topologischer Sicht als klein gelten. Das erste Abzählbarkeitsaxiom besagt: Jeder Punkt hat eine abzählbare Umgebungsbasis. Das erste Abzählbarkeitsaxiom ist eine lokale Forderung. Konvergente Folgen sind in Räumen, die das erste Abzählbarkeitsaxiom nicht erfüllen, sehr viel weniger nützlich. Beispielsweise ist in derartigen Räumen ein Punkt des Abschlusses einer Teilmenge U nicht notwendigerweise Grenzwert einer Folge von Elementen aus U. Um abgeschlossene Mengen durch Grenzwerte zu beschreiben, müssen in solchen Räumen Moore-Smith-Folgen betrachtet werden.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130552190
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786130552190
    • Titel Abzählbarkeitsaxiome
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 68
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38