Accelerated Optimization for Machine Learning

CHF 202.70
Auf Lager
SKU
9RIJAAJ7LJ3
Stock 1 Verfügbar
Geliefert zwischen Di., 11.11.2025 und Mi., 12.11.2025

Details

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.

Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.


The first monograph on accelerated first-order optimization algorithms used in machine learning Includes forewords by Michael I. Jordan, Zongben Xu, and Zhi-Quan Luo, and written by experts on machine learning and optimization Is comprehensive, up-to-date, and self-contained, making it is easy for beginners to grasp the frontiers of optimization in machine learning

Autorentext

Zhouchen Lin is a leading expert in the fields of machine learning and computer vision. He is currently a Professor at the Key Laboratory of Machine Perception (Ministry of Education), School of EECS, Peking University. He served as an area chair for several prestigious conferences, including CVPR, ICCV, ICML, NIPS, AAAI and IJCAI. He is an associate editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence and the International Journal of Computer Vision. He is a Fellow of IAPR and IEEE.

Huan Li received his Ph.D. degree in machine learning from Peking University in 2019. He is currently an Assistant Professor at the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics. His current research interests include optimization and machine learning.

Cong Fang received his Ph.D. degree from Peking University in 2019. He is currently a Postdoctoral Researcher at Princeton University. His research interests include machine learning and optimization.

Inhalt
Chapter 1. Introduction.- Chapter 2. Accelerated Algorithms for Unconstrained Convex Optimization.- Chapter 3. Accelerated Algorithms for Constrained Convex Optimization.- Chapter 4. Accelerated Algorithms for Nonconvex Optimization.- Chapter 5. Accelerated Stochastic Algorithms.- Chapter 6. Accelerated Paralleling Algorithms.- Chapter 7. Conclusions.-

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811529092
    • Sprache Englisch
    • Auflage 1st edition 2020
    • Größe H241mm x B160mm x T22mm
    • Jahr 2020
    • EAN 9789811529092
    • Format Fester Einband
    • ISBN 9811529094
    • Veröffentlichung 30.05.2020
    • Titel Accelerated Optimization for Machine Learning
    • Autor Zhouchen Lin , Cong Fang , Huan Li
    • Untertitel First-Order Algorithms
    • Gewicht 617g
    • Herausgeber Springer Nature Singapore
    • Anzahl Seiten 300
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470