Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Advances in Bias and Fairness in Information Retrieval
Details
This book constitutes the refereed proceedings of the 5th International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2024, held in Washington, DC, USA, on July 18, 2024 in hybrid mode.
The 7 full papers included in this book were carefully reviewed and selected from 20 submissions. They are grouped into three thematic sessions, each focusing on distinct aspects of bias and fairness in information retrieval.
Inhalt
An Offer you Cannot Refuse? Trends in the Coercive Impact of Amazon Book Recommendations.- Retention Induced Biases in a Recommendation System with Heterogeneous Users.- Political Bias of Large Language Models in Few-shot News Summarization.- Fairness Analysis of Machine Learning-Based Code Reviewer Recommendation.- Bias Reduction in Social Networks through Agent-Based Simulations.- vivaFemme: Mitigating Gender Bias in Neural Team Recommendation via Female-Advocate Loss Regularization.- Simultaneous Unlearning of Multiple Protected User Attributes From Variational Autoencoder Recommenders Using Adversarial Training.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031719745
- Herausgeber Springer
- Anzahl Seiten 116
- Lesemotiv Verstehen
- Genre IT Encyclopedias
- Editor Alejandro Bellogin, Ludovico Boratto, Styliani Kleanthous, Elisabeth Lex, Francesca Maridina Malloci, Mirko Marras
- Gewicht 189g
- Untertitel 5th International Workshop, BIAS 2024, Washington, DC, USA, July 18, 2024, Revised Selected Papers
- Größe H235mm x B155mm x T7mm
- Jahr 2024
- EAN 9783031719745
- Format Kartonierter Einband
- ISBN 3031719743
- Veröffentlichung 23.10.2024
- Titel Advances in Bias and Fairness in Information Retrieval
- Sprache Englisch