Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Advances in Bias and Fairness in Information Retrieval
Details
This book constitutes refereed proceedings of the Second International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2021, held in April, 2021. Due to the COVID-19 pandemic BIAS 2021 was held virtually.
The 11 full papers and 3 short papers were carefully reviewed and selected from 37 submissions. The papers cover topics that go from search and recommendation in online dating, education, and social media, over the impact of gender bias in word embeddings, to tools that allow to explore bias and fairnesson the Web.
Inhalt
Towards Fairness-Aware Ranking by Defining Latent Groups Using Inferred Features.- Media Bias Everywhere? A Vision for Dealing with the Manipulation of Public Opinion.- Users' Perception of Search-Engine Biases and Satisfaction.- Preliminary Experiments to Examine the Stability of Bias-Aware Techniques.- Detecting Race and Gender Bias in Visual Representation of AI on Web Search Engines.- Equality of Opportunity in Ranking: A Fair-Distributive Model.- Incentives for Item Duplication under Fair Ranking Policies.- Quantification of the Impact of Popularity Bias in Multi-Stakeholder and Time-Aware Environment.- When is a Recommendation Model Wrong? A Model-Agnostic Tree-Based Approach to Detecting Biases in Recommendations.- Evaluating Video Recommendation Bias on YouTube.- An Information-Theoretic Measure for Enabling Category Exemptions with an Application to Filter Bubbles.- Perception-Aware Bias Detection for Query Suggestions.- Crucial Challenges in Large-Scale Black Box Analyses.- New Performance Metrics for Offline Content-based TV Recommender Systems.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030788179
- Genre Information Technology
- Auflage 1st ed. 2021
- Editor Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
- Lesemotiv Verstehen
- Anzahl Seiten 171
- Größe H10mm x B155mm x T235mm
- Jahr 2021
- EAN 9783030788179
- Format Kartonierter Einband
- ISBN 978-3-030-78817-9
- Titel Advances in Bias and Fairness in Information Retrieval
- Untertitel Second International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2021, Lucca, Italy, April 1, 2021, Proceedings
- Herausgeber Springer
- Sprache Englisch