Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Advances in Fracture Research
Details
Biological materials are bottom-up designed systems formed from billions of years of natural evolution. In the long course of Darwinian competition for survival, nature has evolved a huge variety of hierarchical and multifunctional systems from nucleic acids, proteins, cells, tissues, organs, organisms, animal communities to ecological s- tems. Multilevel hierarchy a rule of nature. The complexities of biology provide an opportunity to study the basic principles of hierarchical and multifunctional s- tems design, a subject of potential interest not only to biomedical and life sciences, but also to nanosciences and nanotechnology. Systematic studies of how hierarchical structures in biology are related to their functions and properties can lead to better understanding of the effects of aging, diseases and drugs on tissues and organs, and may help developing a scienti?c basis for tissue engineering to improve the standard of living. At the same time, such studies may also provide guidance on the dev- opment of novel nanostructured hierarchical materials via a bottom-up approach, i. e. by tailor-designing materials from atomic scale and up. Currently we barely have any theoretical basis on how to design a hierarchical material to achieve a part- ular set of macroscopic properties. The new effort aiming to understand the re- tionships between hierarchical structures in biology and their mechanical as well as other functions and properties may provide challenging and rewarding opportunities for mechanics in the 21st century.
ICF is the most prestigious world forum on fracture
Inhalt
Editorial.- ICF11 Official speeches.- Fractal analysis and synthesis of fracture surface roughness and related forms of complexity and disorder.- Scaling phenomena in fatigue and fracture.- ICF contribution to fracture research in the second half of the 20th century.- Inverse analyses in fracture mechanics.- Nanoprobing fracture length scales.- Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials.- Development of the local approach to fracture over the past 25 years: Theory and applications.- The effect of hydrogen on fatigue properties of metals used for fuel cell system.- A cohesive zone global energy analysis of an impact loaded bi-material strip in shear.- Laboratory earthquakes.- Electromigration failure of metal lines.- Modern domain-based discretization methods for damage and fracture.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789048171576
- Auflage Softcover reprint of hardcover 1st edition 2006
- Editor Alberto Carpinteri, Robert O. Ritchie, Yiu-Wing Mai
- Sprache Englisch
- Genre Maschinenbau
- Lesemotiv Verstehen
- Anzahl Seiten 268
- Größe H260mm x B195mm x T15mm
- Jahr 2010
- EAN 9789048171576
- Format Kartonierter Einband
- ISBN 9048171571
- Veröffentlichung 17.11.2010
- Titel Advances in Fracture Research
- Untertitel Honour and plenary lectures presented at the 11th International Conference on Fracture (ICF11), held in Turin, Italy, on March 20-25, 2005
- Gewicht 572g
- Herausgeber Springer Netherlands