Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Advances in Principal Component Analysis
Details
Covers the latest, cutting-edge topics in PCA, with a focus on open problems
Balances theory and applications, with concrete examples
Offers in-depth analysis of PCA topics simply not covered anywhere else
Includes the most advanced and popular areas of PCA, offering a broad and comprehensive description of all the core principles
Covers the latest, cutting-edge topics in PCA, with a focus on open problems Balances theory and applications, with concrete examples Offers in-depth analysis of PCA topics simply not covered anywhere else Includes the most advanced and popular areas of PCA, offering a broad and comprehensive description of all the core principles
Autorentext
Ganesh R Naik:
Ganesh R. Naik received B.E. degree in Electronics and Communication Engineering from the University of Mysore, India, in 1997. M.E. degree in Communication and Information Engineering from Griffith University, Brisbane, Australia, in 2002, and the PhD degree in the area of Electronics Engineering, specialised in Biomedical Engineering and Signal processing from RMIT University, Melbourne, Australia, in 2009.
He is currently Postdoctoral research fellow at MARCS institute, Western Sydney University. Prior to that he held Chancellor's Post-Doctoral Research Fellow position Centre for Health Technologies (CHT), University of Technology Sydney (UTS). As an early mid-career researcher, he has edited 10 books, authored more than 100 papers in peer reviewed journals, conferences, and book chapters over the last seven years. His research interests include EMG signal processing, Pattern recognition, Blind Source Separation (BSS) techniques, Biomedical signal processing, Human Computer Interface (HCI) and Audio signal processing.
Inhalt
Theory.- Basic principles of PCA.- Geometric Principles of PCA.- Principal components and Correlation.- PCA in Regression analysis matrices.- PCA in cluster analysis.- PCA and factor analysis.- PCA for time series and independent data (ICA).- Sparse PCA.- Non-negative PCA.- Applications of PCA.- PCA for Electrocardiography (ECG) applications.- PCA for Electroencephalography (EEG) applications.- PCA for Electromyography (EMG) applications.- PCA for bioinformatics and gene expression applications.- PCA for human movement science applications.- PCA for Gait Kinematics for Patients with Knee Osteoarthritis.- Neuroscience and biomedical application of PCA.- PCA applications for Brain Computer Interface (BCI) and motor imagery tasks.- PCA for Image processing applications.- PCA for Video processing applications.- PCA for dimensional reduction applications.- PCA for financial and economics applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811067037
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage 1st edition 2018
- Editor Ganesh R. Naik
- Sprache Englisch
- Anzahl Seiten 260
- Herausgeber Springer Nature Singapore
- Größe H241mm x B160mm x T20mm
- Jahr 2018
- EAN 9789811067037
- Format Fester Einband
- ISBN 9811067031
- Veröffentlichung 02.02.2018
- Titel Advances in Principal Component Analysis
- Untertitel Research and Development
- Gewicht 559g