Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Age and Gender Estimation from Fingerprint Images
Details
Age and gender have been extracted using the entropy, Ridge to Valley Area (RVA) and neural-based training of the energies of fingerprints using haar wavelet transform. Gender has been proposed based on fingerprint entropy. The age has been estimated using the energies of the fingerprint computed up to 3rd level of the haar wavelet. It is proposed to decompose the fingerprint at level 3 thereby computing the 12 numbers of energy levels. These energy levels along with RVA and entropy are made as input neurons to a back propagation neural network with two hidden neurons and four output classes. The back propagation neural network is trained using 300 samples of fingerprint images with 150 male and 150 female images. The weights are adjusted with a target MSE of 0.00001. The neural network is trained at a learning rate of 0.1, thereby giving fast learning of the network with weights adjusted to tune the four output classes i.e. 10-15, 16-20, 21-25, and 26-30 age groups.
Autorentext
Mr. Ravi Wadhwa has 15 years of experience in research and academics. He works in various positions in different positions. He is presently working at Chandigarh University, Mohali, India. He serves the university as Assitant Professor and various projects under his supervision.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786205511756
- Genre Electrical Engineering
- Sprache Englisch
- Anzahl Seiten 72
- Herausgeber LAP LAMBERT Academic Publishing
- Größe H220mm x B150mm x T5mm
- Jahr 2022
- EAN 9786205511756
- Format Kartonierter Einband
- ISBN 6205511754
- Veröffentlichung 18.10.2022
- Titel Age and Gender Estimation from Fingerprint Images
- Autor Ravi Wadhwa , Rakesh Kumar
- Untertitel Entropy Ridge to Valley Area and Back Propagation Neural Network
- Gewicht 125g