Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
AI for Brain Lesion Detection and Trauma Video Action Recognition
Details
This book constitutes the proceedings of the First BONBID-HIE Lesion Segmentation Challenge and the First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, in Vancouver, BC, Canada, during October 2023.
For BONBID-HIE 2023 Challenge 6 papers have been accepted out of 14 submissions. They span a broad array of approaches leveraging anatomical information about HIE, data augmentation, training strategies, model architecture, and integration with traditional machine learning methods. For the TTC 2023 Trauma Thompson Challenge 4 accepted contributions are included in this book. They deal with advancements in machine learning methods and their practical applications in addressing small and diffuse lesions in HIE segmentation.
Klappentext
This book constitutes the proceedings of the First BONBID-HIE Lesion Segmentation Challenge and the First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, in Vancouver, BC, Canada, during October 2023. For BONBID-HIE 2023 Challenge 6 papers have been accepted out of 14 submissions. They span a broad array of approaches leveraging anatomical information about HIE, data augmentation, training strategies, model architecture, and integration with traditional machine learning methods. For the TTC 2023 Trauma Thompson Challenge 4 accepted contributions are included in this book. They deal with advancements in machine learning methods and their practical applications in addressing small and diffuse lesions in HIE segmentation.
Inhalt
BONBID-HIE 2023.- Fusion of Deep and Local Features Using Random Forests for Neonatal HIE Segmentation.- Enhancing Lesion Segmentation in the BONBID-HIE Challenge: An Ensemble Strategy.- An Ensemble Approach for Segmentation of Neonatal HIE lesions.- Improving Segmentation of Hypoxic Ischemic Encephalopathy Lesions by Heavy Data Augmentation: Contribution to the BONBID Challenge.- A Deep Neural Network Approach for the Lesion Segmentation from Neonatal Brain Magnetic Resonance Imaging.- SegResNet based Reciprocal Transformation for BONBID-HIE Lesion Segmentation.- Trauma THOMPSON 2023.- Overview of the Trauma THOMPSON Challenge at MICCAI 2023.- The Trauma THOMPSON Challenge Report MICCAI 2023.- Action Recognition and Action Anticipation Tasks in the Trauma THOMPSON Challenge Technical Report.- QuIIL at T3 challenge: Towards Automation in Life-Saving Intervention Procedures from First-Person View.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031716256
- Herausgeber Springer
- Anzahl Seiten 112
- Lesemotiv Verstehen
- Genre Software
- Editor Rina Bao, Ellen Grant, Andrew Kirkpatrick, Juan Wachs, Yangming Ou
- Sprache Englisch
- Gewicht 184g
- Untertitel First BONBID-HIE Lesion Segmentation Challenge and First Trauma Thompson Challenge, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 16 and 12, 2023, Proceedings
- Größe H235mm x B155mm x T7mm
- Jahr 2024
- EAN 9783031716256
- Format Kartonierter Einband
- ISBN 3031716256
- Veröffentlichung 24.10.2024
- Titel AI for Brain Lesion Detection and Trauma Video Action Recognition