Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Algebraic Systems of Equations and Computational Complexity Theory
Details
Significant progress has been made during the last fifteen years in the solution of nonlinear systems, particularly in computing fixed points, solving systems of nonlinear equations and applications to equilibrium models.
This volume presents a self-contained account of recent work on simplicial and continuation methods applied to the solution of algebraic equations. The contents are divided into eight chapters. Chapters 1 and 2 deal with Kuhn's algorithm; Chapter 3 considers Newton's method, and a comparison between Kuhn's algorithm and Newton's method is presented in Chapter 4. The following four chapters discuss respectively, incremental algorithms and their cost theory, homotopy algorithms, zeros of polynomial mapping, and piecewise linear algorithms.
For researchers and graduates interested in algebraic equations and computational complexity theory.
Inhalt
Preface; H.W. Kuhn. 1. Kuhn's Algorithm for Algebraic Equations. 2. Efficiency of Kuhn's Algorithm. 3. Newton Method and Approximate Zeros. 4. A Comparison of Kuhn's Algorithm and Newton Method. 5. Incremental Algorithms and their Cost Theory. 6. Homotopy Algorithms. 7. Probabilistic Discussion on Zeros of Polynomial Mappings. 9. Piecewise Linear Algorithms. References. Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09780792325338
- Sprache Englisch
- Größe H235mm x B17mm x T155mm
- Jahr 1994
- EAN 9780792325338
- Format Fester Einband
- ISBN 978-0-7923-2533-8
- Titel Algebraic Systems of Equations and Computational Complexity Theory
- Autor Z. Wang , S. Xu , T. Gao
- Gewicht 502g
- Herausgeber Springer Netherlands
- Anzahl Seiten 244
- Genre Mathematik