Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Algorithmic Learning Theory
Details
This book constitutes the refereed proceedings of the 27th International Conference on Algorithmic Learning Theory, ALT 2016, held in Bari, Italy, in October 2016, co-located with the 19th International Conference on Discovery Science, DS 2016. The 24 regular papers presented in this volume were carefully reviewed and selected from 45 submissions. In addition the book contains 5 abstracts of invited talks. The papers are organized in topical sections named: error bounds, sample compression schemes; statistical learning, theory, evolvability; exact and interactive learning; complexity of teaching models; inductive inference; online learning; bandits and reinforcement learning; and clustering.
Includes supplementary material: sn.pub/extras
Inhalt
Error bounds, sample compression schemes.- Statistical learning, theory, evolvability.- Exact and interactive learning.- Complexity of teaching models.- Inductive inference.- Online learning.- Bandits and reinforcement learning.- Clustering.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319463780
- Herausgeber Springer International Publishing
- Anzahl Seiten 392
- Lesemotiv Verstehen
- Genre Software
- Auflage 1st edition 2016
- Editor Ronald Ortner, Sandra Zilles, Hans Ulrich Simon
- Sprache Englisch
- Gewicht 593g
- Untertitel 27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings
- Größe H235mm x B155mm x T22mm
- Jahr 2016
- EAN 9783319463780
- Format Kartonierter Einband
- ISBN 3319463780
- Veröffentlichung 21.09.2016
- Titel Algorithmic Learning Theory