An Efficient Human Face Recognition Approach

CHF 57.55
Auf Lager
SKU
BRVPJBA3J9N
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Facial expressions convey non verbal cues, which play an important role in interpersonal relations. Automatic recognition of human face based on facial expression can be important component of natural human-machine interface. It may also be used in behavioral science. Although human can recognize the face practically without any effort, but reliable face recognition by machine is a challenge. This book presents a new approach for recognizing the face of a person considering the expression of the same human face at different instant of time. This methodology is developed combining Eigenface method for feature extraction and k-Means clustering for identification of the human face. In experimental purpose, AT&T face database is used which contains a set of 40 people with 10 images with different facial expressions at the different illumination. Experimental results demonstrate the efficacy of the approach. This book is written such a manner that it will help researchers to work on the area of image processing and pattern recognition. It also helps graduate students to know the background and basic theories of different face recognition methods.

Autorentext

Soumen Bag received his B.E. and M.Tech degree in ComputerScience & Engineering from NIT Durgapur, India in 2003 and 2008respectively. At Present he has been a Research Scholar in IITKharagpur, India. His research interests are in Image Processing,OCR for Indian scripts, and Pattern Recognition. He is the authorof 5 conference papers.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783843378307
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2010
    • EAN 9783843378307
    • Format Kartonierter Einband
    • ISBN 3843378304
    • Veröffentlichung 05.12.2010
    • Titel An Efficient Human Face Recognition Approach
    • Autor Soumen Bag
    • Untertitel Combination of Eigenface and k-Means Clustering methods
    • Gewicht 125g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 72
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470