Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
An Improved DBSCAN Algorithm for High Dimensional Datasets
Details
Emergence of modern techniques for scientific data collection has resulted in large scale accumulation of data pertaining to diverse fields. Conventional database querying methods are inadequate to extract useful information from huge data banks. Cluster analysis is one of the major data analysis methods. It is the art of detecting groups of similar objects in large data sets without having specified groups by means of explicit features. The problem of detecting clusters of points is challenging when the clusters are of different size, density and shape. The development of clustering algorithms has received a lot of attention in the last few years and many new clustering algorithms have been proposed. Thus this book provides detailed knowlege regarding density based clustering algorithms and an improvement over one of the algorithm.
Autorentext
Glory H. Shah completed her Master of Technology in computer Engineering from Dharmsinh Desai University, Nadiad, Gujarat, India. She is also an Assistant Professor at Marwadi Education foundation group of Institute Rajkot, Gujarat, India. Her current research interest includes Data Mining Clustering (Density-Based Clustering), Distributed Database.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659140259
- Sprache Englisch
- Titel An Improved DBSCAN Algorithm for High Dimensional Datasets
- ISBN 978-3-659-14025-9
- Format Kartonierter Einband (Kt)
- EAN 9783659140259
- Jahr 2012
- Größe H220mm x B220mm x T150mm
- Autor Glory Shah
- Untertitel An improvement in terms of number of clusters an in general increasing the accuracy of algorithm
- Genre Sprach- und Literaturwissenschaften
- Anzahl Seiten 140
- Herausgeber LAP Lambert Academic Publishing